Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nature ; 622(7982): 329-338, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37794186

RESUMEN

The Pharma Proteomics Project is a precompetitive biopharmaceutical consortium characterizing the plasma proteomic profiles of 54,219 UK Biobank participants. Here we provide a detailed summary of this initiative, including technical and biological validations, insights into proteomic disease signatures, and prediction modelling for various demographic and health indicators. We present comprehensive protein quantitative trait locus (pQTL) mapping of 2,923 proteins that identifies 14,287 primary genetic associations, of which 81% are previously undescribed, alongside ancestry-specific pQTL mapping in non-European individuals. The study provides an updated characterization of the genetic architecture of the plasma proteome, contextualized with projected pQTL discovery rates as sample sizes and proteomic assay coverages increase over time. We offer extensive insights into trans pQTLs across multiple biological domains, highlight genetic influences on ligand-receptor interactions and pathway perturbations across a diverse collection of cytokines and complement networks, and illustrate long-range epistatic effects of ABO blood group and FUT2 secretor status on proteins with gastrointestinal tissue-enriched expression. We demonstrate the utility of these data for drug discovery by extending the genetic proxied effects of protein targets, such as PCSK9, on additional endpoints, and disentangle specific genes and proteins perturbed at loci associated with COVID-19 susceptibility. This public-private partnership provides the scientific community with an open-access proteomics resource of considerable breadth and depth to help to elucidate the biological mechanisms underlying proteo-genomic discoveries and accelerate the development of biomarkers, predictive models and therapeutics1.


Asunto(s)
Bancos de Muestras Biológicas , Proteínas Sanguíneas , Bases de Datos Factuales , Genómica , Salud , Proteoma , Proteómica , Humanos , Sistema del Grupo Sanguíneo ABO/genética , Proteínas Sanguíneas/análisis , Proteínas Sanguíneas/genética , COVID-19/genética , Descubrimiento de Drogas , Epistasis Genética , Fucosiltransferasas/metabolismo , Predisposición Genética a la Enfermedad , Plasma/química , Proproteína Convertasa 9/metabolismo , Proteoma/análisis , Proteoma/genética , Asociación entre el Sector Público-Privado , Sitios de Carácter Cuantitativo , Reino Unido , Galactósido 2-alfa-L-Fucosiltransferasa
2.
medRxiv ; 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37425837

RESUMEN

Metabolites are small molecules that are useful for estimating disease risk and elucidating disease biology. Nevertheless, their causal effects on human diseases have not been evaluated comprehensively. We performed two-sample Mendelian randomization to systematically infer the causal effects of 1,099 plasma metabolites measured in 6,136 Finnish men from the METSIM study on risk of 2,099 binary disease endpoints measured in 309,154 Finnish individuals from FinnGen. We identified evidence for 282 causal effects of 70 metabolites on 183 disease endpoints (FDR<1%). We found 25 metabolites with potential causal effects across multiple disease domains, including ascorbic acid 2-sulfate affecting 26 disease endpoints in 12 disease domains. Our study suggests that N-acetyl-2-aminooctanoate and glycocholenate sulfate affect risk of atrial fibrillation through two distinct metabolic pathways and that N-methylpipecolate may mediate the causal effect of N6, N6-dimethyllysine on anxious personality disorder. This study highlights the broad causal impact of plasma metabolites and widespread metabolic connections across diseases.

3.
Cell Metab ; 35(4): 695-710.e6, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36963395

RESUMEN

Associations between human genetic variation and clinical phenotypes have become a foundation of biomedical research. Most repositories of these data seek to be disease-agnostic and therefore lack disease-focused views. The Type 2 Diabetes Knowledge Portal (T2DKP) is a public resource of genetic datasets and genomic annotations dedicated to type 2 diabetes (T2D) and related traits. Here, we seek to make the T2DKP more accessible to prospective users and more useful to existing users. First, we evaluate the T2DKP's comprehensiveness by comparing its datasets with those of other repositories. Second, we describe how researchers unfamiliar with human genetic data can begin using and correctly interpreting them via the T2DKP. Third, we describe how existing users can extend their current workflows to use the full suite of tools offered by the T2DKP. We finally discuss the lessons offered by the T2DKP toward the goal of democratizing access to complex disease genetic results.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Acceso a la Información , Estudios Prospectivos , Genómica/métodos , Fenotipo
4.
Bioinform Adv ; 3(1): vbad018, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36908397

RESUMEN

Motivation: Biobank scale genetic associations results over thousands of traits can be difficult to visualize and navigate. Results: We have created LAVAA, a visualization web-application to generate genetic volcano plots for simultaneously considering the P-value, effect size, case counts, trait class and fine-mapping posterior probability at a single-nucleotide polymorphism (SNP) across a range of traits from a large set of genome-wide association study. We find that user interaction with association results in LAVAA can enrich and enhance the biological interpretation of individual loci. Availability and implementation: LAVAA is available as a stand-alone web service (https://geneviz.aalto.fi/LAVAA/) and will be available in future releases of the finngen.fi website starting with release 10 in late 2023.

5.
Cell Genom ; 3(1): 100218, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36777185

RESUMEN

Natural human knockouts of genes associated with desirable outcomes, such as PCSK9 with low levels of LDL-cholesterol, can lead to the discovery of new drug targets and treatments. Rare loss-of-function variants are more likely to be found in the homozygous state in consanguineous populations, and deep molecular phenotyping of blood samples from homozygous carriers can help to discriminate between silent and functional variants. Here, we combined whole-genome sequencing with proteomics and metabolomics for 2,935 individuals from the Qatar Biobank (QBB) to evaluate the power of this approach for finding genes of clinical and pharmaceutical interest. As proof-of-concept, we identified a homozygous carrier of a very rare PCSK9 variant with extremely low circulating PCSK9 levels and low LDL. Our study demonstrates that the chances of finding such variants are about 168 times higher in QBB compared with GnomAD and emphasizes the potential of consanguineous populations for drug discovery.

6.
EMBO Mol Med ; 15(1): e16359, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36504281

RESUMEN

Studies of the genetic regulation of cerebrospinal fluid (CSF) proteins may reveal pathways for treatment of neurological diseases. 398 proteins in CSF were measured in 1,591 participants from the BioFINDER study. Protein quantitative trait loci (pQTL) were identified as associations between genetic variants and proteins, with 176 pQTLs for 145 CSF proteins (P < 1.25 × 10-10 , 117 cis-pQTLs and 59 trans-pQTLs). Ventricular volume (measured with brain magnetic resonance imaging) was a confounder for several pQTLs. pQTLs for CSF and plasma proteins were overall correlated, but CSF-specific pQTLs were also observed. Mendelian randomization analyses suggested causal roles for several proteins, for example, ApoE, CD33, and GRN in Alzheimer's disease, MMP-10 in preclinical Alzheimer's disease, SIGLEC9 in amyotrophic lateral sclerosis, and CD38, GPNMB, and ADAM15 in Parkinson's disease. CSF levels of GRN, MMP-10, and GPNMB were altered in Alzheimer's disease, preclinical Alzheimer's disease, and Parkinson's disease, respectively. These findings point to pathways to be explored for novel therapies. The novel finding that ventricular volume confounded pQTLs has implications for design of future studies of the genetic regulation of the CSF proteome.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Parkinson , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/líquido cefalorraquídeo , Metaloproteinasa 10 de la Matriz/genética , Enfermedad de Parkinson/genética , Proteómica , Sitios de Carácter Cuantitativo , Biomarcadores/líquido cefalorraquídeo , Antígenos CD , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/genética , Proteínas de la Membrana/genética , Proteínas ADAM/genética , Glicoproteínas de Membrana/genética
7.
Nat Med ; 28(11): 2321-2332, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36357675

RESUMEN

Garrod's concept of 'chemical individuality' has contributed to comprehension of the molecular origins of human diseases. Untargeted high-throughput metabolomic technologies provide an in-depth snapshot of human metabolism at scale. We studied the genetic architecture of the human plasma metabolome using 913 metabolites assayed in 19,994 individuals and identified 2,599 variant-metabolite associations (P < 1.25 × 10-11) within 330 genomic regions, with rare variants (minor allele frequency ≤ 1%) explaining 9.4% of associations. Jointly modeling metabolites in each region, we identified 423 regional, co-regulated, variant-metabolite clusters called genetically influenced metabotypes. We assigned causal genes for 62.4% of these genetically influenced metabotypes, providing new insights into fundamental metabolite physiology and clinical relevance, including metabolite-guided discovery of potential adverse drug effects (DPYD and SRD5A2). We show strong enrichment of inborn errors of metabolism-causing genes, with examples of metabolite associations and clinical phenotypes of non-pathogenic variant carriers matching characteristics of the inborn errors of metabolism. Systematic, phenotypic follow-up of metabolite-specific genetic scores revealed multiple potential etiological relationships.


Asunto(s)
Errores Innatos del Metabolismo , Metaboloma , Humanos , Metaboloma/genética , Metabolómica , Plasma/metabolismo , Fenotipo , Errores Innatos del Metabolismo/genética , Proteínas de la Membrana/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo
8.
Elife ; 112022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36073519

RESUMEN

Pleiotropy and genetic correlation are widespread features in genome-wide association studies (GWAS), but they are often difficult to interpret at the molecular level. Here, we perform GWAS of 16 metabolites clustered at the intersection of amino acid catabolism, glycolysis, and ketone body metabolism in a subset of UK Biobank. We utilize the well-documented biochemistry jointly impacting these metabolites to analyze pleiotropic effects in the context of their pathways. Among the 213 lead GWAS hits, we find a strong enrichment for genes encoding pathway-relevant enzymes and transporters. We demonstrate that the effect directions of variants acting on biology between metabolite pairs often contrast with those of upstream or downstream variants as well as the polygenic background. Thus, we find that these outlier variants often reflect biology local to the traits. Finally, we explore the implications for interpreting disease GWAS, underscoring the potential of unifying biochemistry with dense metabolomics data to understand the molecular basis of pleiotropy in complex traits and diseases.


Asunto(s)
Pleiotropía Genética , Estudio de Asociación del Genoma Completo , Aminoácidos/genética , Cetonas , Fenotipo , Polimorfismo de Nucleótido Simple
9.
Am J Hum Genet ; 109(10): 1727-1741, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36055244

RESUMEN

Transcriptomics data have been integrated with genome-wide association studies (GWASs) to help understand disease/trait molecular mechanisms. The utility of metabolomics, integrated with transcriptomics and disease GWASs, to understand molecular mechanisms for metabolite levels or diseases has not been thoroughly evaluated. We performed probabilistic transcriptome-wide association and locus-level colocalization analyses to integrate transcriptomics results for 49 tissues in 706 individuals from the GTEx project, metabolomics results for 1,391 plasma metabolites in 6,136 Finnish men from the METSIM study, and GWAS results for 2,861 disease traits in 260,405 Finnish individuals from the FinnGen study. We found that genetic variants that regulate metabolite levels were more likely to influence gene expression and disease risk compared to the ones that do not. Integrating transcriptomics with metabolomics results prioritized 397 genes for 521 metabolites, including 496 previously identified gene-metabolite pairs with strong functional connections and suggested 33.3% of such gene-metabolite pairs shared the same causal variants with genetic associations of gene expression. Integrating transcriptomics and metabolomics individually with FinnGen GWAS results identified 1,597 genes for 790 disease traits. Integrating transcriptomics and metabolomics jointly with FinnGen GWAS results helped pinpoint metabolic pathways from genes to diseases. We identified putative causal effects of UGT1A1/UGT1A4 expression on gallbladder disorders through regulating plasma (E,E)-bilirubin levels, of SLC22A5 expression on nasal polyps and plasma carnitine levels through distinct pathways, and of LIPC expression on age-related macular degeneration through glycerophospholipid metabolic pathways. Our study highlights the power of integrating multiple sets of molecular traits and GWAS results to deepen understanding of disease pathophysiology.


Asunto(s)
Estudio de Asociación del Genoma Completo , Transcriptoma , Bilirrubina , Carnitina , Glicerofosfolípidos , Humanos , Masculino , Metabolómica , Sitios de Carácter Cuantitativo/genética , Miembro 5 de la Familia 22 de Transportadores de Solutos/genética , Transcriptoma/genética
10.
BMC Bioinformatics ; 23(1): 169, 2022 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-35527238

RESUMEN

BACKGROUND: A genome-wide association study (GWAS) correlates variation in the genotype with variation in the phenotype across a cohort, but the causal gene mediating that impact is often unclear. When the phenotype is protein abundance, a reasonable hypothesis is that the gene encoding that protein is the causal gene. However, as variants impacting protein levels can occur thousands or even millions of base pairs from the gene encoding the protein, it is unclear at what distance this simple hypothesis breaks down. RESULTS: By making the simple assumption that cis-pQTLs should be distance dependent while trans-pQTLs are distance independent, we arrive at a simple and empirical distance cutoff separating cis- and trans-pQTLs. Analyzing a recent large-scale pQTL study (Pietzner in Science 374:eabj1541, 2021) we arrive at an estimated distance cutoff of 944 kilobasepairs (95% confidence interval: 767-1,161) separating the cis and trans regimes. CONCLUSIONS: We demonstrate that this simple model can be applied to other molecular GWAS traits. Since much of biology is built on molecular traits like protein, transcript and metabolite abundance, we posit that the mathematical models for cis and trans distance distributions derived here will also apply to more complex phenotypes and traits.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Genotipo , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple , Proteínas/genética , Proteínas/metabolismo
11.
Mol Psychiatry ; 27(7): 3095-3106, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35411039

RESUMEN

Genome-wide association studies have discovered hundreds of genomic loci associated with psychiatric traits, but the causal genes underlying these associations are often unclear, a research gap that has hindered clinical translation. Here, we present a Psychiatric Omnilocus Prioritization Score (PsyOPS) derived from just three binary features encapsulating high-level assumptions about psychiatric disease etiology - namely, that causal psychiatric disease genes are likely to be mutationally constrained, be specifically expressed in the brain, and overlap with known neurodevelopmental disease genes. To our knowledge, PsyOPS is the first method specifically tailored to prioritizing causal genes at psychiatric GWAS loci. We show that, despite its extreme simplicity, PsyOPS achieves state-of-the-art performance at this task, comparable to a prior domain-agnostic approach relying on tens of thousands of features. Genes prioritized by PsyOPS are substantially more likely than other genes at the same loci to have convergent evidence of direct regulation by the GWAS variant according to both DNA looping assays and expression or splicing quantitative trait locus (QTL) maps. We provide examples of genes hundreds of kilobases away from the lead variant, like GABBR1 for schizophrenia, that are prioritized by all three of PsyOPS, DNA looping and QTLs. Our results underscore the power of incorporating high-level knowledge of trait etiology into causal gene prediction at GWAS loci, and comprise a resource for researchers interested in experimentally characterizing psychiatric gene candidates.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , ADN , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Genómica , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética
12.
Nat Commun ; 13(1): 1644, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35347128

RESUMEN

Few studies have explored the impact of rare variants (minor allele frequency < 1%) on highly heritable plasma metabolites identified in metabolomic screens. The Finnish population provides an ideal opportunity for such explorations, given the multiple bottlenecks and expansions that have shaped its history, and the enrichment for many otherwise rare alleles that has resulted. Here, we report genetic associations for 1391 plasma metabolites in 6136 men from the late-settlement region of Finland. We identify 303 novel association signals, more than one third at variants rare or enriched in Finns. Many of these signals identify genes not previously implicated in metabolite genome-wide association studies and suggest mechanisms for diseases and disease-related traits.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Alelos , Finlandia , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino , Fenotipo
13.
Elife ; 112022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35302493

RESUMEN

The recognition that individual GPCRs can activate multiple signaling pathways has raised the possibility of developing drugs selectively targeting therapeutically relevant ones. This requires tools to determine which G proteins and ßarrestins are activated by a given receptor. Here, we present a set of BRET sensors monitoring the activation of the 12 G protein subtypes based on the translocation of their effectors to the plasma membrane (EMTA). Unlike most of the existing detection systems, EMTA does not require modification of receptors or G proteins (except for Gs). EMTA was found to be suitable for the detection of constitutive activity, inverse agonism, biased signaling and polypharmacology. Profiling of 100 therapeutically relevant human GPCRs resulted in 1500 pathway-specific concentration-response curves and revealed a great diversity of coupling profiles ranging from exquisite selectivity to broad promiscuity. Overall, this work describes unique resources for studying the complexities underlying GPCR signaling and pharmacology.


Asunto(s)
Técnicas Biosensibles , Proteínas de Unión al GTP , Técnicas Biosensibles/métodos , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , beta-Arrestina 1/metabolismo , beta-Arrestinas/metabolismo
14.
Hum Genet ; 141(8): 1431-1447, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35147782

RESUMEN

Drug development and biological discovery require effective strategies to map existing genetic associations to causal genes. To approach this problem, we selected 12 common diseases and quantitative traits for which highly powered genome-wide association studies (GWAS) were available. For each disease or trait, we systematically curated positive control gene sets from Mendelian forms of the disease and from targets of medicines used for disease treatment. We found that these positive control genes were highly enriched in proximity of GWAS-associated single-nucleotide variants (SNVs). We then performed quantitative assessment of the contribution of commonly used genomic features, including open chromatin maps, expression quantitative trait loci (eQTL), and chromatin conformation data. Using these features, we trained and validated an Effector Index (Ei), to map target genes for these 12 common diseases and traits. Ei demonstrated high predictive performance, both with cross-validation on the training set, and an independently derived set for type 2 diabetes. Key predictive features included coding or transcript-altering SNVs, distance to gene, and open chromatin-based metrics. This work outlines a simple, understandable approach to prioritize genes at GWAS loci for functional follow-up and drug development, and provides a systematic strategy for prioritization of GWAS target genes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Estudio de Asociación del Genoma Completo , Cromatina/genética , Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Humanos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
15.
Nat Genet ; 53(11): 1527-1533, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34711957

RESUMEN

Genome-wide association studies (GWASs) have identified many variants associated with complex traits, but identifying the causal gene(s) is a major challenge. In the present study, we present an open resource that provides systematic fine mapping and gene prioritization across 133,441 published human GWAS loci. We integrate genetics (GWAS Catalog and UK Biobank) with transcriptomic, proteomic and epigenomic data, including systematic disease-disease and disease-molecular trait colocalization results across 92 cell types and tissues. We identify 729 loci fine mapped to a single-coding causal variant and colocalized with a single gene. We trained a machine-learning model using the fine-mapped genetics and functional genomics data and 445 gold-standard curated GWAS loci to distinguish causal genes from neighboring genes, outperforming a naive distance-based model. Our prioritized genes were enriched for known approved drug targets (odds ratio = 8.1, 95% confidence interval = 5.7, 11.5). These results are publicly available through a web portal ( http://genetics.opentargets.org ), enabling users to easily prioritize genes at disease-associated loci and assess their potential as drug targets.


Asunto(s)
Estudio de Asociación del Genoma Completo , Genómica/métodos , Modelos Genéticos , Mapeo Cromosómico/métodos , Epigenómica , Estudio de Asociación del Genoma Completo/métodos , Estudio de Asociación del Genoma Completo/estadística & datos numéricos , Humanos , Aprendizaje Automático , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
16.
BMC Med ; 19(1): 232, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34503513

RESUMEN

BACKGROUND: Genetic, lifestyle, and environmental factors can lead to perturbations in circulating lipid levels and increase the risk of cardiovascular and metabolic diseases. However, how changes in individual lipid species contribute to disease risk is often unclear. Moreover, little is known about the role of lipids on cardiovascular disease in Pakistan, a population historically underrepresented in cardiovascular studies. METHODS: We characterised the genetic architecture of the human blood lipidome in 5662 hospital controls from the Pakistan Risk of Myocardial Infarction Study (PROMIS) and 13,814 healthy British blood donors from the INTERVAL study. We applied a candidate causal gene prioritisation tool to link the genetic variants associated with each lipid to the most likely causal genes, and Gaussian Graphical Modelling network analysis to identify and illustrate relationships between lipids and genetic loci. RESULTS: We identified 253 genetic associations with 181 lipids measured using direct infusion high-resolution mass spectrometry in PROMIS, and 502 genetic associations with 244 lipids in INTERVAL. Our analyses revealed new biological insights at genetic loci associated with cardiometabolic diseases, including novel lipid associations at the LPL, MBOAT7, LIPC, APOE-C1-C2-C4, SGPP1, and SPTLC3 loci. CONCLUSIONS: Our findings, generated using a distinctive lipidomics platform in an understudied South Asian population, strengthen and expand the knowledge base of the genetic determinants of lipids and their association with cardiometabolic disease-related loci.


Asunto(s)
Estudio de Asociación del Genoma Completo , Infarto del Miocardio , Pueblo Asiatico/genética , Predisposición Genética a la Enfermedad , Humanos , Lípidos , Polimorfismo de Nucleótido Simple , Población Blanca
18.
Nat Genet ; 53(1): 54-64, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33414548

RESUMEN

In cross-platform analyses of 174 metabolites, we identify 499 associations (P < 4.9 × 10-10) characterized by pleiotropy, allelic heterogeneity, large and nonlinear effects and enrichment for nonsynonymous variation. We identify a signal at GLP2R (p.Asp470Asn) shared among higher citrulline levels, body mass index, fasting glucose-dependent insulinotropic peptide and type 2 diabetes, with ß-arrestin signaling as the underlying mechanism. Genetically higher serine levels are shown to reduce the likelihood (by 95%) and predict development of macular telangiectasia type 2, a rare degenerative retinal disease. Integration of genomic and small molecule data across platforms enables the discovery of regulators of human metabolism and translation into clinical insights.


Asunto(s)
Salud , Metabolismo/genética , Diabetes Mellitus Tipo 2/genética , Oftalmopatías/genética , Frecuencia de los Genes/genética , Sitios Genéticos , Pleiotropía Genética , Genoma Humano , Receptor del Péptido 2 Similar al Glucagón/genética , Glicina/metabolismo , Humanos , Modelos Lineales , Análisis de la Aleatorización Mendeliana , Errores Innatos del Metabolismo/genética , Metaboloma/genética , Mutación Missense/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Telangiectasia Retiniana/genética , Tamaño de la Muestra , Serina/metabolismo
19.
Nat Genet ; 52(12): 1314-1332, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33230300

RESUMEN

Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to ~1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency ≤ 0.01) variant BP associations (P < 5 × 10-8), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were ~8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.


Asunto(s)
Presión Sanguínea/genética , Frecuencia de los Genes/genética , Predisposición Genética a la Enfermedad/genética , Hipertensión/genética , Factor de Transcripción GATA5/genética , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Mutación/genética , Fosfolipasa C beta/genética , Polimorfismo de Nucleótido Simple/genética
20.
Nat Metab ; 2(10): 1135-1148, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33067605

RESUMEN

Circulating proteins are vital in human health and disease and are frequently used as biomarkers for clinical decision-making or as targets for pharmacological intervention. Here, we map and replicate protein quantitative trait loci (pQTL) for 90 cardiovascular proteins in over 30,000 individuals, resulting in 451 pQTLs for 85 proteins. For each protein, we further perform pathway mapping to obtain trans-pQTL gene and regulatory designations. We substantiate these regulatory findings with orthogonal evidence for trans-pQTLs using mouse knockdown experiments (ABCA1 and TRIB1) and clinical trial results (chemokine receptors CCR2 and CCR5), with consistent regulation. Finally, we evaluate known drug targets, and suggest new target candidates or repositioning opportunities using Mendelian randomization. This identifies 11 proteins with causal evidence of involvement in human disease that have not previously been targeted, including EGF, IL-16, PAPPA, SPON1, F3, ADM, CASP-8, CHI3L1, CXCL16, GDF15 and MMP-12. Taken together, these findings demonstrate the utility of large-scale mapping of the genetics of the proteome and provide a resource for future precision studies of circulating proteins in human health.


Asunto(s)
Sistema Cardiovascular/metabolismo , Mapeo Cromosómico , Sistemas de Liberación de Medicamentos , Genómica , Transportador 1 de Casete de Unión a ATP/genética , Asma/genética , Técnicas de Silenciamiento del Gen , Estudio de Asociación del Genoma Completo , Humanos , Enfermedades Inflamatorias del Intestino/genética , Proteína 1 Similar al Receptor de Interleucina-1/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Desequilibrio de Ligamiento , Análisis de la Aleatorización Mendeliana , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteoma , Sitios de Carácter Cuantitativo , Receptores CCR2/genética , Receptores CCR5/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...